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Abstract. A new method of analysing the experimental atom-atom pair distribution functions 
g=(r), based on the corresponding state principle. is presented. The method is first tested on 
niuogen and chlorine liquids via computer simulations by exploiting intermolecular potentials 
that reproduce the experimental dawsatisfactorily. It is then applied to liquid fluorine to explain 
the large discrepancies we found when experimental and simulated g d r )  were compared. 
Different modek involving various degrees of microscopic orientational corelation are built up: 
among them, only one implying no appreciable orientational order agrees with the expimental 
data for fluorine. This model also fits liquid nitrogen well and hils in the case of liquid chlorine; 
consequently. the microscopic SlNcture of liquid fluorine must be very different from that of 
other liquid halogens.-However, some discrepancies between model and experimental g,(r) of 
fluorine around 5 8, and spurious oscillations below 2 8, indicate that significant experimental 
uncertainties could affect the experimental data. The results of other models, which imply 
different degrees oforientational order, reported here can provide a useful guide for interpreting 
new experimental data. 

1. Introduction 

The structure factor S ( Q )  and the related atom-atom radial distribution function g&) 
obtained from neutron diffraction experiments have produced a significant contribution to 
the knowledge of liquid structure. The interest in diatomic liquids is due to the presence 
of orientational correlation between molecules, which influences diffraction measurements. 
To extract information about correlation is, however, a difficult task since all the quantities 
measurable by the neutron diffraction technique are averaged over the orientations of the 
molecules. So, recourse to a theoretical model or to computer simulations is necessary. In 
recent years, computer simulations exploiting sophisticated intermolecular potentials have 
produced significant improvements in the agreement between simulated and experimental 
pair correlation functions. Particular attention has been devoted to the liquid halogens, 
chlorine, bromine and iodine, for which anisotropic site potentials have been developed 
and several simulations [1,2] and experimental works [3,4] have been performed. In 
general, effective pair potentials fit the global shape of the atom-atom pair distribution 
function gxd(r): serious problems arise only when one needs to extract.information about 
the microscopic structure. 

Liquid F2 is an exception. Indeed, for this liquid, only one experimental measurement 
[5] is available, only a two-centre Lennard-Jones potential model [6] has been proposed 
and no direct comparison between them exists. No effort has been made to build up a good 
potential for the liquid phase, other potential models having been developed for the solid 
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Table 1. Triple (Tu, V,) and reduced (P = TITm, V. = V f V,) values of temperature and 
molar volume for the various liquids. The values of the bond length 1 are those used in the 
potential models (section 2 of the main text); or, and oc me the atomic site and mean 'excluded 
volume' diameters. respeetively. 

Ar 83.8 0.282 1.44 1.22 - - 3.405 
N1 66.6 0.321 1.44 1.15 1.098 3.20 3.55 
9 53.5 0.222 1.44 1.10 1.427 2.70 3.14 
Clt 172.2 0.407 1.45 1.13 1.994 3.20 3.85 

phase [7] and in order to describe molecular dissociation and chemical reactivity in the fluid 
phase [8]. Furthermore, an attempt to extract information on the microscopic local order 
from the available experimental structure factor S ( Q )  has failed [9]. 

We have devoted recent works to the study of the orientational order in diatomic liquids 
[10-13]. By developing the idea that the angular space of a pair R = (U,, W Z )  could 
be divided into a few disjoint classes of molecular orientations U;, U;, called microscopic 
configurations, it has been shown that it is possible to compare pair distribution functions 
of different liquids as well as to gain a reliable description of the microscopic structure. 
The method is particularly useful in analysing the experimental ga(r) of liquid Fz, which is 
uncertain because of some experimental difficulties [14] discussed in detail in subsection 2.2, 
and appears to be in contrast with molecular dynamics (MD) simulation [6], at least initially 
for qualitative comparison. Since the direct comparison will show that the discrepancies are 
very strong, the main goal of the work is to recognize to what extent the experimental data 
are consistent with some models of diatomic liquids. For this purpose, the centre, g&), 
and atom, g&), distribution functions of liquid FZ are derived from those of Clz, NZ and 
Ar liquids by exploiting a new method of analysis. The paper is organized as follows: in 
section 2. experimental and simulation data are directly compared and the influence of the 
experimental uncertainties on the structure factor S(Q)  is critically discussed; in section 3, 
the way of comparing pair correlation functions of different liquids is illustrated. Liquids 
Ar, Nz, F2 and Cla in nearly the same corresponding state are considered and some models 
of gm(r) for Nz and Clz are compared to MD results. These models are applied to liquid 
FZ and a general discussion on the consistency between models and experimental data is 
reported in section 4; the summary of section 5 concludes the work. 

2. Available experimental data and MD simulations 

2.1. MD simulations 

The MD technique has been used to simulate liquid Ar, Nz, Clz and Fz. The potential 
models used have been the Lennard-Jones model for Ar with parameters taken from the 
second vinal coefficient [15], the two-centre Lennard-Jones plus quadrupole model for Nz 
1161, the anisotropic site model A2 for C12 [ l ]  and the two-centre Lennard-Jones model 
for FZ [6]. The output configurations have been produced following the standard procedure 
described in [lo]. All the liquids have been simulated by following the dynamics of 500 
particles. The temperatures T and the molar volumes V of the thermodynamic states 
investigated are reported in table 1. The values correspond to thermodynamic points on the 
coexistence curve at the same reduced values T* = T/T,, V* = V/V,, Tu and Vu being 
the triple-point values. 
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2.2. Experimental data and MD results for liquid Fz 
The only available diffraction measurement on liquid FZ was performed at the 
thermodynamic state T = 77 K and V = 0.2433 x m3 [5]. The experimental 
structure factor S ( Q )  and the related atom-atom pair distribution function g=(r) are shown 
in figure I(a) and (b), respectively. In [14], the quality of the experimental data has 
been judged insufficient to allow definitive conclusions about the presence of orientational 
correlation. The reasons are 

(i) the use of a Monel alloy cell, imposed by the high degree of corrosivity of the liquid 
Fz, has produced sharp Bragg peaks in the 2.54.0 A-' range and caused some problems 
in subtracting the empty cell contribution and 

(ii) the experiment was performed in a limited range of scattering angle so the maximum 
value of momentum transfer, Q, was about 8 A-]. 

I. ' 
2 4 6 8 

Figure 1. (a) Experimental (-) and simulated (. . . . . .) total structure factors S(Q).  firsf- 
neighbour (D$)(Q), - .  -) and~next-neighbour ( D C ( Q ) .  (----) structure factors and form 
factor f i  (Q) (- - -) of liquid fluorine. (b) Experimental (-1 and simulated (- - - 4 atom-atom 
radial distribution functions of liquid Fz. 

The uncertainty (ii) could seriously affect g,(r) via truncation errors and invalidate 
any investigation of the orientational correlations performed in r space. It is therefore 
worth clarifying the Q range in which orientational correlations fall. This can be done 
by computer simulation, assuming that orientational correlations do not extend beyond the 
first coordination shell, i.e. beyond the first minimum of the centre-centre pair distribution 
function. This is valid in liquid Clz [l 11 and the same rule can be reasonably extended to 
liquid Fz. 

The experimental and simulated S ( Q )  and ga(r) are compared in figure l(a) and 
(b), respectively. The discrepancies are very strong and mainly concern the atom-atom 
distribution of first-neighbouring molecules. The structure factor S(Q) can be written as 
the sum of the first- (f) and next- (n) neighbour contributions and of the intramolecular form 
factor f i (Q) ,  i.e. 

(1) S ( Q )  = f i ( Q Y +  D("'(Q) + D"(Q) 
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m 
D(O(Q) = B z p l  drr2gz(r) sin(Qr)/Qr 

D")(Q) = 8 s p  1 drr 2 [gau (") (r) - 11 sin(Qr)/Qr. 

(3) 

(4) 
m 

Here a and j3 are indices of atomic sites in a molecule, TIcl and are the centre-atom 
separation vectors, 1 is the bond length and p is the atomic density. 

g$)(r) and git)(r) have been obtained from molecules whose centres of mass fall in 
the first and next coordination shell, respectively. The functions D'"'(Q), D(O(Q) and 
f i (Q) are shown in figure l(a). As is seen, for Q z 8 A-' only f i ( Q )  gives significant 
contributions so the effects of the truncation on the orientationalcorrelations in transforming 
the experimental S(Q) can be neglected. In the region 4 A-' < Q < 8 A-', only 
D(O(Q) and fi (Q) contribute, D(O(Q) significantly modulating the f l ( Q )  signal. This 
indicates that the differences between simulation and experiment are not ascribable only to 
the experimental data corrections since the experimental spurious peaks, mentioned in (i), 
fall below 4 A-'. Therefore the MD simulation using the two-centre Lennard-Jones potential 
for liquid FZ cannot be used to derive information on orientational correlations. To this end 
we will use a recently proposed method in the following [IZ]. 

3. Theoretical models 

3.1. The complete set of orientation and the corresponding state principle 

In this work the term configuration r is used to indicate a class of geometries of the isolated 
dimer. A configuration is chosen by progressively increasing the angular limits that define 
the geometry of a given oriented pair and verifying that the partial contribution to g=(r)  and 
g,(r) * r2 does not change significantly in shape and in r position. Using this criterion, it 
has been shown [I31 that the total configuration space = (WI, w2) of linear molecules can 
be divided into at least five disjoint classes of configurations given by X(BI = 90" f 30", 
62 = 90" i 40", @ = 90" f 30"); T(6i = 90" f 40", 62 = 0" f 50". 0" < @ < 360"); 
LP(0i = 150 f 30"- 62 = 30" i 300, 0" < @ < ,360"); I1 (61 = 75" i 15O, 62 = 70" i Z O O ,  

-60" < 4 < 60'). V(@ = 75" f 15'. 62 = 110" f ZOO, -60" < @ < 60"), where the polar 
and the azimuthal angles 61, 62 and q5 = @z! - @I refer to the intermolecular vector. In this 
way we can write 

In figure 2 the total atom-atom and centr-entre radial distribution functions and the partial 
contributions gr(r) for N2, Fz and Clz liquid are shown. As one can see, the differences 
between gcc(r) or of various liquids are due to differences in intensity and r position 
of the gr ( r ) .  To compare the gc.(r) of different liquids, it is therefore necessary to compare 
the g r ( r )  between them. Recently, a method based on the corresponding state principle has 
been proposed [12]. It exploits two scale constants, U, and ur. which represent the diameters 
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Figure 2. Simulated radial distribution functions for atoms, 
gY(4 and &r). ((a), (c), (e)), and for centres, z d r )  and 
&(r)  ((b). (d), (0). The c w e s  represent total (-, upper 
curve). T (-1, LP (- - -), X (. . . . . .), [I (- . -) and V 
(-) contributions. Of the full lines representing the T and 

0.5 

v canfiguntions. the lowest one always refers to the V. 

of the mean spherical volume excluded by a molecule and that of the mean volume excluded 
by a molecule involved in a configuration r. respectively. The distribution function 

gdT*) = arGLc(~*) (6) 
r 

where 

G!c(~* )  = (l/Qr)gr(T*) (7) 
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T* = T/ue = ( r  - s )/U. (8) 

(9) 

sr = ur  -ut (10) 

r 

n' = -!. j j de1 dBzd@sin 6, sin &cos @ 
s2 

obeys a corresponding state principle: to a good approximation, it is a universal curve for 
liquids of linear molecules in corresponding state and reproduces the reduced distribution 
function of liquid Ar g(r*), where r* = r/uAAr. The value of 0; is obtained from 

(11) ue = U& ( v,/ v,"') 
where V, is the triple molar volume. In table 1, the values of U* are reported. The shifts 
sr, and consequently ur. are determined by imposing that the parts of GF&-) beyond the 
first coordination shell are as far as possible coincident. In figure 3 the functions GFC(r) 
of N2, Fz and Cl2, obtained from the &(r) of figure 2(b), (d) and (f) respectively, via (7) 
and (lo), are shown; the values of ur ,  determined by the applied shifts sr, are reported 
in table 2. It is worth noting that u r  can be easily estimated a priori without using MD 
data in the following way. A diatomic molecule is modelled by two fused hard spheres of 
diameter U*, whose centres are separated by the molecular bond length 1 (dumbbell model). 
The volume of this molecule is equivalent to that of a sphere whose diameter is given by 
t171 

(12) 

By putting equal to the mean spherical excluded volume ue, the atomic diameter um can 
be evaluated from (12). The results are reported in table I .  Then, from the dumbbell model, 
one calculates the mean centre distance of two molecules with two atoms in contact, as the 
polar angles vary in each configuration. The values U: obtained in this way are reported 
in table 2. As seen they are in good agreement with the values of ur. 

UhS = S,(l + il/ux, 3 - f(l/uu)'). 

Table 2. Values of the fnction of the solid angle R' ((9) of the main text), of the average 
centre of m s  distances of molecules in contact actually used, or, and those computed from 
the dumbbell model, of. 

X T LP I1 v 
62' = 0.1309) (0' = 0.3572) (0' = 0.2500) (R' = 0.1309) a' = 0.1309) 

d (A) Ud ' ( A) d ( A )  0; (A) J ( A )  U; (A) d ( A )  rrf (A) S'(A) qj- (A) 
Nz 3.35 3.35 3.66 3.60 .. 3.96 .3..86 . 3,.30 .,,..,,....I 3.,40 ....,..,.,. 3,AO .,.,,,,..,,., 3 . 4 0 , ,  , ,  

F2 2.87 2.87 3.32 3.30 13.70~ 3.72 2.83 2.81 2.90, 2.99 
Ch 3.54 3.50 4.16 4.05 4.75 4.70 3.46 3.55 3.74 3.64 

3.2. The relation between centre-centre and atom-atom distribution functions 

For homonuclear diatomic liquids, the intermolecular structure factors of atoms and centres 
are given by 
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Figure 3. (a) Distribution functions C,r,(r) obtained from the simulated &(r )  of figure 2. For 
each fluid the curves represent T (-). LP (- - -1, X (. . . . . .) I1 (- . -1 and V (-). Of lhe 
two full lines, the lowest one represents the V configuration. (b) DisUibution functions ,&(T*) 
for Ar (-1. N2 (- .-). F2 (- - 4 and Cl2 (. . . . . -). 

where 
respectively in a pair of molecules labelled 1 and 2. 

positions and orientations. In this case one has 

~ 1 2  and are the atom-atom, centr-entre and centre-atom separation vectors 

The free rotation model (model I) [I 81 assumes the statistical independence of molecular 

where 

and the atom-atom radial distribution function can be obtained from 

This model implies that the molecules are spherically distributed around a central one 
so that  the^ centre structure factor Dc,(Q) is that of a reference system whose properties 
are described by a spherically symmetric potential. For fluids of diatomic molecules the 
properties of liquid Ar in the corresponding state are usually exploited [ 141. 

When the short-range repulsive forces are strongly anisotropic, the use of a spherical 
reference potential is expected to fail. (17) can be corrected along this line by choosing 
&(e) of a non-spherical reference potential, by using, for example, MD results. An 
alternative route. which avoids the use of MD, is described in section 4. This way of 
correcting (17) will be denoted as the 'quasifree' rotation model or model II. 
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Further insight into the relation between centre-centre and atom-atom distribution 
functions can be obtained by introducing the configurations. Details of the centre-atom 
relationships obtained for the configurations in Q space and in r space are reported in [ 1 I ]  
and [13], respectively. The results of interest here can be summarized as follows. By 
imposing the conservation of the number of interacting sites contained in a spherical shell 
of radius r and thickness dr, one obtains the following site-site distribution function in the 
intermolecular reference frame [ 131: 

AgmD(rOp, w;, w;)r$drup = dr12 (18) 

where A&, WI. wz) is the contribution of the orientations 01 &Am, 0 ~ i A 0  to the angular 
radial distribution function, 6 is the D i m  delta function, and the parameter d,p(r. w ; ,  w;) 
can be calculated from the dimer geometry as 

dr’Ag(r‘, wi, wh)r%(r’ -rap - dap) s 

dup(r, w;) = r2 - rap = 1 ~ 1 2 1  - 1m - TI= + n ~ l .  (19) 

The total Ag&, w ; ,  w;) obtained from (18) is given by 

By averaging over a configuration r one has 

where gr(r) = (g(r, U;, w;))~  and gz(rap) is the centre-centre distribution function shifted 
from the position r12 to the position rep = rlzfdup. (21) gives very good results for a small 
set of geometries centred around the orientations wi, w; 1131. When the angular limits of 
a configuration r grow, some assumptions are necessary since several site-site distances 
rep could correspond to a given centre-centre distance r12. Here two approximations are 
considered. 

(i) For a given rlz, rap can assume all the possible values as the polar angular vary in 
the configuration. The intensity of gcc(rlz) is then distributed over the range spanned by rmp 
with a law derivable from a freely rotating dumbbell. Details of this method are reported in 
the appendix. This model, referred to as model IU, is similar to a ‘quasifree’ rotation model 
(model 11) in which the reference potential is not spherically symmetric, being determined by 
the molecular shape. Short-range repulsive anisotropic forces determine different r positions 
of each &(r) but no preferred orientation exists in a given configuration r. With respect 
to model 11, however, a significant improvement has been obtained since specific operations 
are used to obtain each gL(r) from each gL(r). By contrast, (15) implies, in the r space, 
a convolution with the same function for every grc(r). 

(ii) The correspondence r12. rup is one to one and, for every r12, rep and kp are chosen 
as the mean values they assume as the polar angles vary in the configuration. Simple ways 
of computing such mean values are reported in the appendix. This model, hereafter referred 
to as model IV, implies the presence of preferred orientations, so one can expect that it 
holds for highly correlated fluids. 



Models of orientational correlations in fluids 49 1 

4. Results and discussion 

Our purpose is to understand whether the experimental data agree with one of the models of 
g&) described in section 3. Since NZ and Clz give rise, respectively, to weakly and strongly 
correlated liquids whose experimental g,(r) are well reproduced by MD simulations, it is 
worth first applying the models to these liquids. In this way one can establish the model 
capability of representing more or less correlated liquids. 

I 

I 

m 

Figure 4. A comparison between simulated (-) and model &.(r). In (a) and (b) the results 
of model I (. . . . . .) and model II (- - -1 are shown, in (c) and (d) those of models 111 (- - -) 
and IV (. . . . . .) are shown. 

The results of applying models I and 11 are shown in figure 4(a) and (b) for Nz and 
C12, respectively. Both the models fail completely in the case of Clz while they work fairly 
well for Nz. The correction obtained by putting the real g&) (model II) in place of the 
Ar-like one has a very small effect. The disagreement between the model and real gw(r) of 
Clz is due to the double-peak structure, which is not reproduced at all by the models. The 
factor f i . (Q)  in (17) cancels the different r positions of each g,',(r) visible in figure 2(b), 
(d) and (0. When a specific operator is applied to each &(r) (models III and IV) the 
agreement is greatly improved, as figure 4(c) and (d) show. For Nz and Clz, the properties 
of the non-spherical reference potential are simulated by dumbbells with hard atomic cores 
of 3.20 A and 3.25 A, respectively. Such values correspond to the r positions in which the 
real ga(r) start to be significantly different from zero. As is seen, model III gives a very 
good description in the case of NZ but fails for Clz. By contrast, model IV is fair for Clz 
but shows some discrepancies in reproducing the shape of the first gm(r) peak of Nz. In 
conclusion, models I11 and IV are particularly suitable for describing weakly and strongly 
correlated systems, respectively. 
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It is now possible to investigate the presence of orientational correlations in liquid F2. 
For this purpose, the application of the models IJI and IV is sufficient. We will proceed as 
follows. (i) Centre-centre distribution functions are built up from the corresponding state 
principle. In this way. the differences in populations of configurations predicted by different 
anisotropic reference potentials are considered. (ii) The models III and N are applied to 
each g&) obtained in this way. 

From (6). one obtains 

where 0; and sr are those of Fa while GFc(~*) are taken from the reference fluid. The 
values of U, and v i  for liquid F2 are reported in tables 1 and 2. The liquids of Ar, N2 
and Clz are used as reference liquids and the different populations of each configuration are 
accounted for by the Gf(r'). For liquid Ar, the functions Grcc(r*) coincide with gm(r*), 
where r' = r/aAr. The three gC&) resulting from (22) are shown in figure 5. As is seen, 
the main differences are in the first-peak height, the uniform distribution of Ar giving the 
broadest and lowest first peak. 

The three atom-atom distribution functions obtained from each g&) are compared 
with the experimental data in  figure 6(a) in the case of model 111 and in figure 6(b) in the 
case of model W.  In applying model In the atomic hard cores have been chosen equal 
to 2.0 A as suggested by the experimental g&-). As is seen, all the g&) reproduce 
the right r positions of the two peaks at 3.2 and 4.0 A. Model IV (figure 6@)) yields a 
g&) sharper than the experimental ones independent of the reference liquid we use for 
deriving the centre distribution functions. This means that the different populations of the 
configurations can explain small rearrangements in height of the two peaks but cannot give 
the broadening required by the experimental data. The predictions of model 111 (figure 6(a)) 
are in quite good agreement with the experiments; the best agreement arises from the centre- 
centre dishibution function predicted by liquid Ar, that is, by a uniform distribution of the 
intensity of the configurations. In conclusion, the available experimental data on liquid F2 
are consistent with a model in which no preferred orientation exists. This fluid appears more 
similar to liquid N2 than to the other liquid halogens. This similarity is also confirmed by the 
solid phase: both crystalline Nz and F2 transform to a plastic cubic phase (B phase) before 
melting in which molecules are nearly freely rotating [7]. On the other hand, some details 
of the experimental data suggest caution before drawing definitive conclusions. There are 
oscillations of the experimental &(r) before 2.0 A, which are probably due to noise. Their 
influence on the double structure of the first peak could be relevant. Indeed, around the 
first minimum at 5.0 A, the experimental g,(r) show a small bump followed by successive 
oscillations. If the behaviour of each partial contribution g&(r) is considered (figure 7). one 
can see that the third smoothed peak of the LP configurations falls effectively around 5.0 A, 
but there are no other structures capable of explaining the oscillations of the experimental 
data. Therefore, a noise signal probably affects the experimental data over all the r range 
and makes the conclusions suggested here uncertain. Moreover, the potentials developed 
for the solid phase [7] and those describing molecular dissociation in fluid 181 give a g&) 
more similar to the MD results of [6] than to the experimental data. The differences between 
the predictions of the models investigated here are not limited to small details, as in the 
case of N2 (figure 4(a) and (c)), but involve large differences in broadening and rising of 
the first two peaks (figure 6(a) and (b)); a new experimental measurement could definitively 
clarify the degree of microscopic orientational order present in liquid F2. 
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Figure 5. g d r )  of F2 obtained from MD (-) and from Ar (- . -), N2 (- - -) and Clz 
(. . . . . .) via (22) of the main text. 

5. Summary 

The  method^ of analysis applied here is based on the existence of a universal curve 
representing the gcc(r) of liquids in corresponding state. Such a curve is well reproduced 
by the g(r*) of liquid Ar,~ which can therefore be exploited as a reference liquid where no 
orientational correlation is present. To compare or derive the g&) of different liquids one 
needs to know two basic parameters, the mean spherical excluded volume diameter ne and 
the bond length 1. Both are derivable from literature, 0; only requiring the application 
of the corresponding state principle (11). Further, it is shown that only a finite and 
small number of disjoint classes of orientations determines the main features of the pair 
distribution functions; it is then possible to derive the diameters d of the volume excluded 
by a molecule for each configuration r. This yields a reliable estimate of the shifts sr, 
which are the main effect produced by the anisotropic potential. The other effects concern 
the shape and population of the gL(r) .  which are due to the details of the intermolecular 
potentials, such as the competition between non-spherical shape forces and electrostatic 



494 A De Santis et a1 

- 
L - 
m 

1 .@ 

0.5 

1.5 

1 .@ 

0 . 5  

r 

r 

2 4 6 8 

Figure 6. A comparison between experimental (-)and model g&) of liquid &: (a) results 
of model 111 obtained from Ar (. . . . .), N2 (-) and CI2 (- - -) via (22) of the m d n  text; (b) 
as in (a) but for model IV. 

quadrupolar forces discussed ‘in [18]. Therefore, no exact a priori prediction is possible. 
However, we can  estimate the trend of the centre distribution function when each g:,(r) 
evolves from the uniform distribution of Ar to that of orientationally correlated liquids. In 
the case of liquid F2, the better knowledge of the Nz and Clz liquids has been exploited. Nz 
is a slightly anisotropic molecule where the ‘free rotation’ approximation works well and 
a simple ZWQ potential is sufficient for modelling the real liquid [16]. By contrast in Clz 
the short-range forces are strongly anisotropic and a more sophisticated pair potential with 
anisotropic interacting sites is required [I]. Figure 5 shows how the differences between 
the populations of &(r) can affect the total g&) of liquid F2. As is seen, the bond length 
of F2 is not sufficient to evidence separate contributions of each gL(r). 

The same comparison can be performed between &(r)  where the contributions of 
the different configurations are better separated in their r positions and the experimental 
information is accessible. Two possible ways of deriving atom-atom from centre-centre 
distribution functions, which work well in the case of N2 and Clz liquids, are exploited 
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Figun 7. A comparison between gu(r) of liquid Fz: experimental (-) (top) and from model 
111 (- - -) obtained using Ar data. The panial &Cr) obtained from model ill are also repolted: 
T (-), LP (- - -), X (. . . . . .), I1 (- . -) and V (-) contributions. Of the lower two full 
lines. the lowest one represents the V configuration. 

and the results are shown in figure 6(a) and (b). The differences between the model 
predictions are significant. The available experimental data are consistent only with a 
‘quasifree’ rotation model. The differences in populations between configurations play a 
minor role, the less correlated cases of Nz and Ar giving, however, the better results. So, the 
liquid F2 appears to be more similar in its microscopic structure to the N2 liquid than to the 
other liquid halogens. This conclusion should be however confirmed by other experimental 
data, since those available are probably affected by noise signals. 

Appendix 

The vector distance between the sites 01 and j3, belonging to molecules 1 and 2 respectively, 
is given by 

(AI) 
where rlu and r 2 p  are vectors pointing from the centre to the site and r12 is the centre 
of mass distance. If the z axis of the reference system coincides with the polar axis, the 
components of rmB are 

Tap = TIZ -T I .  + n p  

x.8 = -(~/2)(-  sin e, cos 41 +sin e, cos 42) 

y,! = (1/2)(- sin e, sin $1 +sin e, sin42) ( A 3  
zap = (z/~)(-cos el +COS e,) + rIZ 
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where the polar angles 8 and @ specify the molecular orientation w and 1 is the bond 
length. To obtain the shift d$, one needs to average T.P. since the components (A7J 
are not independent variables. A simple analytical solution can be obtained using the 
approximation ( ~ r ~ p ~ )  = G. r' ) One has 

A De Santis et 01 

d$ = - r12 

and by putting $I = $I2 - $1 equations (A2) yield 

12 12 
r& = q(sinz 81 cos2 @I + sin' 82 cos' $2 - 2sin 81 sin 8, cos @) + -(cos2 BI + cos2 82) 4 

-irlz(-cos el +cos$z)+r~,  644) 

so that the average 

(r:p)r = (/ l / r$ sin 8] sin 82  d81 de2 d$I ) / ( / l / s i n  81 sin 82d8ld&,d@ 

becomes analytically solvable from elementary integration formulas [19]. 
Alternatively. equation (A4) can also be used to compute the mean value of rap for 

fixed centre distances rI2 as the polar angles run over the configuration r. The mean values 
have been obtained by weighting every rap with the relative frequency of its occurrence 
fmp. Both methods lead to fair agreement between model and MD g$r) for angular limits 
of *5". 

When the angular limits grow, for every value of r12 one should take proper account of 
the spread of values assumed by r.p as the polar angles run over the selected configuration 
r. In model N this effect is neglected, thus obtaining model distribution functions slightly 
sharper than the MD ones (figure 4(c), (d)). In model IV, the frequency distribution fmP has 
been used to compute the spread in rup by assuming that no preferred orientation exists as 
the polar angles run over a given configuration r. Equality between the number of centres 
contained in the elementary spherical volume of radius r and thickness dr and the number 
of sites distributed over the interval r,, r b  is obtained from 

dN' = gfc(r)r2 dr = d A i r  drr2f$(r) (A6) 

where dA is a normalization factor. The elementary site-site distribution function is 

and the integration over all the centre distances gives the desired sitesite distribution 
functions glp(r). The sum over the configurations r produces the total atom-atom 
distribution functions shown in figure 4(a) and (b). The electronic overlap effects are 
taken into account by neglecting the contributions to g$(r) due to sites whose distance 
rap is lower than the atomic hard cores which are 3.1, 2.0 and 2.7 8, for Nz, FZ and Clz, 
respectively. Such values nearly correspond to the r positions at which the experimental or 
MD ga,(r) start to be different from zero. 
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